GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway
نویسندگان
چکیده
Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops.
منابع مشابه
The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants.
1 Isoprenoid biosynthesis 1.1 The mevalonate route to isopentenyl diphosphate 1.2 Isoprenoid biosynthesis in higher plants: some contradictions with the mevalonate pathway 2 The discovery of the mevalonate-independent pathway 2.1 The origin of the discovery: the biosynthesis of bacterial hopanoids 2.2 The origin of the carbon atoms of isoprenic units in the mevalonate-independent pathway 2.3 d-...
متن کاملA Comprehensive Overview on Valuable Tropane Alkaloids: Scopolamine, Atropine, and Hyoscyamine
Tropane alkaloids such as scopolamine (C17H21NO4), atropine (C17H23NO3) and hyoscyamine (C17H23NO3) are the most important plant secondary metabolites in the pharmaceutical industry due to anticholinergic activity, competition with muscarinic receptors and also treating different human diseases. Scopolamine, hyoscyamine and atropine are the most important tropane alkaloids used as anticoagulant...
متن کاملIsoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis.
Two independent pathways operate in plants for the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of all isoprenoids. The mevalonate pathway is present in the cytosol, whereas the recently discovered mevalonate-independent pathway is localized to plastids. We have used isolated peppermint (Mentha piperita) oil gland secretory ce...
متن کاملTowards Application of Bioactive Natural Products Containing Isoprenoids for the Regulation of HMG-CoA Reductase—A Review
Recognition of the biological properties of numerous “natural products” has fueled the current focus of this field, namely, the search for new drugs, antibiotics, insecticides, and herbicides. Based on their biosynthetic origins, natural products can be divided into three major groups: the isoprenoids, alkaloids, and phenolic compounds. Isoprenoids are structurally the most diverse group of sec...
متن کاملAbiotic and biotic elicitors’ effects on secondary metabolites biosynthesis of periwinkle (Catharanthus roseus (Linn.) G. Don)
Based on recent statistical survey, the cancer is the third important factor in Iran mortality. Vinblastine and vincristine alkaloids are dominantly biosynthesized in the aerial parts of periwinkle, broadly applied for cancer treatment. Therefore, over production of these alkaloids by using the biotechnological approaches is inevitable. Since the terpenoid indole alkaloids (TIAS) biosynthesis p...
متن کامل